First Total Synthesis of Four Benzodioxane Neolignans

Xiao Bi JING, Wen Xin GU, Ping Yan BIE, Xin Feng REN, Xin Fu PAN*
Department of Chemistry, National Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000

Abstract

Four 1,4-benzodioxane neolignans were first synthesized from pyrogallol, in which the Claisen rearrangement was used to afford three important $\mathrm{C}_{6}-\mathrm{C}_{3}$ units.

Keywords: Synthesis, neolignans, Eusiderin K, Eusiderin J, Eusiderin E, Eusiderin F.

During the last years, 1,4-benzodioxins and 1,4-benzodioxanes have attracted considerable interest, mainly due to their very interesting biological activities. Some of them act as α - or β-blocking agents and could be used in antidepression or antihypertension therapy ${ }^{1}$. Others exhibit antihyperglycemic properties ${ }^{2}$, or could act as inhibitors of 5-lipoxygenase ${ }^{3}$. Moreover, these compounds could also be used for useful synthetic transformations ${ }^{4}$. While there are many synthetic methods for the synthesis of 1,4-benzodioxines ${ }^{5}$, the synthetic routes to the neolignans which have 4-hydroxy-3,5-dimethoxy aryl groups have not been reported, because it is difficult to synthesize the $\mathrm{C}_{6}-\mathrm{C}_{3}$ units of 4-hydroxy-3,5-dimethoxy aryl group. Herein, we developed a facile synthetic route to (\pm)-Eusiderin $K,(\pm)$-Eusiderin $\mathrm{J}^{6},(\pm)$-Eusiderin E^{7} and (\pm)-Eusiderin F^{8}, in which the Claisen rearrangement reaction was used to afford the 4-hydroxy-3,5-dimethoxy aryl group (5) and 3,4-dihydroxy-5-methoxy aryl group (9).

Eusiderin E

Eusiderin J

Eusiderin F

As shown in the scheme \mathbf{I}, pyrogallol was easily converted into trimethyl pyrogallol 2. Treatment of $\mathbf{2}$ with ZnCl_{2} and propionic acid gave 2,6-dimethoxy phenol $\mathbf{3}$ in 81% yield. Compound $\mathbf{4}$, readily available in near quantitative yield by the reaction of
$\mathbf{3}$ with allyl bromide, was submitted to a Claisen rearrangement in a sealed tube to give $\mathbf{5}$ in $>99 \%$ yield. Compound $\mathbf{5}$ was treated with PdCl_{2} in methanol to afford compound $\mathbf{6}$ in 88% yield.

Scheme I

Eusiderin K
Eusiderin J

Eusiderin E

Reagents and Conditions: i: $\mathrm{KOH},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}_{4} 98 \%$; ii: ZnCl_{2}, propionic acid, reflux 81%; iii: $\mathrm{K}_{2} \mathrm{CO}_{3}$ Allyl bromide 98%; iv: Claisen rearrangement $>99 \%$; v: PdCl_{2} methanol 88%; vi: $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot 10 \mathrm{H}_{2} \mathrm{O}, \mathrm{K}_{2} \mathrm{CO}_{3},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}_{4} 85 \%$, vii: $\mathrm{Ag}_{2} \mathrm{O}$, benzene/acetone (5:1, v/v), 40\%; viii: KOH , $\mathrm{CH}_{3} \mathrm{I}$, acetone, 95%.

Synthesis of the other two units $\mathbf{9}$ and $\mathbf{1 0}$ also began from pyrogallol, which was selectively protected by $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}_{4}$ and then treated with $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ to afford compound (7). $\mathbf{7}$ was converted into compound $\mathbf{8}$ and $\mathbf{9}$ in high yield by the same approach like 5 and 6 .

Compounds 6 and 9 were converted into (\pm)-Eusiderin K^{9} with silver oxide as a oxidizing reagent. Then (\pm)-Eusiderin K was protected by $\mathrm{CH}_{3} \mathrm{I}$ in a base condition to afford (\pm)-Eusiderin J^{10}.

The procedures of synthesis (\pm)-Eusiderin E^{11} and (\pm)-Eusiderin F^{12} were the same as that of (\pm)-Eusiderin K and (\pm)-Eusiderin J.

Acknowledgments

We are grateful to the National Natural Science Foundation of China (No. 29772012) for financial support.

References and Notes

1. a) W. L. Nelson, J. E. Wennerstrom, D. C. Dyer, M. Engel, J. Med. Chem., 1977, 20, 880. b) G. Marciniak, A. Delgado, G. Leclerc, J. Velly, N. Decker, J. Schwartz, J. Med. Chem., 1989, 32, 1402.
c) R. R. Ruffolo Jr., W. Boudinell, J. P. Hieble, J. Med. Chem., 1995, 38, 3681.
d) D. Giardina, R. Bertini, E. Brancia, L. Brasili, C. Melchiore, J. Med. Chem., 1985, 28 , 1354.
e) W. Quaglia, M. Pigini, S. K. Tayebati, A. Piergentili,M. Giannella, A. Leonardi, C. Taddei, C. Melchiorre, J. Med. Chem. 1996, 39, 2253.
2. G. P. Fagan, C. P. Chapleo, A. C. Lane, M. Myers, A. G. Roach, C. F. C. Roach, M. R. Stillings, A. P. Welbourn, J. Med. Chem. 1988, 31, 944.
3. Y. Satoh, C. Pouwers, L. M. Toledo, T. J. Kowalski, P.A. Peters, E. F. Kimble, J. Med. Chem. 1995, $38,68$.
4. a) T. V. Lee, A. J. Leigh, C. B. Chapleo, Tetrehedron 1990, 46, 921.
b) T. V. Lee, A. J. Leigh, C. B. Chapleo, Synlett 1989, 30.
c) E. G. Mata, A. G. Suarez, Synth. Commun. 1997, 27, 1291.
d) P. Moreau, G. Guillaumet, G. Coudert, Synth. Commun.1994, 24, 1781.
5. a)M. Massacret, P. Lhoste, R. Lakhmiri, T. Parella, D. Sonou, J. Org. Chem. 1999, 2665.
b) A. R. Katrizky, M. J. Sewell, R. D. Topsom, A. M. Monro, G. W. H. Potter, Tetrahedron 1966, 22, 931.
c) G. Farina, G. Zecchi, Synthesis 1977, 755.
d) G. Guillaumet, G. Coudert, B. Loubinoux, Tetrahedron Lett. 1979, 4379.
e) N. Ruiz, M. D. Pujol, G. Guillaumet, G. Coudert, Tetrahedron Lett. 1992, 33, 2965.
f) C. B. Chapleo, J. A. Davis, P. L. Myers, M. J. Readhead, M. R. Stillings, A. P. Welbourn,
F. C. Hampton, K. Sugden, J. Hetrocycl. Chem. 1984, $21,77$.
g) W. Adam, E. Schmidt, K. Takayama, Synthesis 1982, 322.
h) T. V. Lee, A. J. Leigh, C. B. Chapleo, Synthesis 1989, 208.
i) H. H. Lee, W. A. Denny, J. Chem. Soc., Perkin Trans. I 1990, 1071.
j) M. Massacret, C. Goux, P. Lhoste, D. Sinou, Tetrahedron Lett. 1994, 35, 6093.
k) W. X. Gu, X. G. She, X. F. Pan, T. K. Yang, Tetrahedron: Asmmetry 1988, 9, 1377.
1) X. G. She, S. H. Qi, W. X. Gu, X. F. Pan, J. Chem. Research(s) 1998, 436.
m) X. G. She, Y. H. Gan, T. X. Wu, X. F. Pan, Chemical Journal of Chinese Universities 1998, 8, 1271.
6. M. S. D.Silva, Barbosa-Filho, J. M. Yoshida, M. Gottlieb, O. R. Phytochemistry, 1989, 28, 3477.
H. C. Sergio, Y. Massayoshi and R. G.Otto. Phytochemistry, 1985, 24, 1051
W. D. Macrae, G. H. N.Towers. J. Ethnopharmald, 1984, 12, 75

Eusiderin K: M. S. D. Silva, J. M. Barbosa-Filho, M. yoshida, O. R. Gottlieb, Phytochemistry, 1989, 28, 3477.
yellow solid, m.p. : $85-87^{\circ} \mathrm{C}$; IR: v (cm^{-1}, film): 1130.3 (C-O-C), 1231.9, 1330.3, 1459.4, 1504.7, 1593.3 ($\mathrm{C}=\mathrm{C}$ of benzene), 1691.2 ($\mathrm{C}=\mathrm{C}$), 2836.5, 2938.1 ($-\mathrm{OCH}_{2}-\mathrm{H}$), 3544.3 (O-H); EI-MS $(m / z): 372\left(\mathrm{M}^{+}, 15\right), 194(100), 179(9) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DCCl}_{3}\right): \delta 1.24(\mathrm{~d}$,
$\mathrm{J}=6.71 \mathrm{~Hz}, 3 \mathrm{H}, 9-\mathrm{H}), 3.30$ (d, J=6.40Hz, 2H, $7^{\prime}-\mathrm{H}$), 3.64 ($\mathrm{s}, 3 \mathrm{H},-\mathrm{OMe}$), 3.91 ($\mathrm{s}, 6 \mathrm{H},-\mathrm{OMe}$), $4.05-4.13(\mathrm{~m}, 1 \mathrm{H}, 8-\mathrm{H}), 4.52(\mathrm{~d}, \mathrm{~J}=7.70 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 5.16\left(\mathrm{~d}, \mathrm{~J}=13.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$, 5.87-5.97 (m, $\left.1 \mathrm{H},-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}\right), 6.35-6.63(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}): \delta 132.3$ (1-C), 104.2 (2-C), 147.2 (3-C), 135.3 (4-C), 147.2 (5-C), 104.2 (6-C), 81.1 (7-C), 74.2 ($8-\mathrm{C}$), 17.3 ($9-\mathrm{C}), 132.1$ ($\left.1^{\prime}-\mathrm{C}\right), 109.6$ ($\left.2^{\prime}-\mathrm{C}\right), 144.3$ ($\left.3^{\prime}-\mathrm{C}\right), 131.3$ ($\left.4^{\prime}-\mathrm{C}\right), 148.5\left(5^{\prime}-\mathrm{C}\right)$, $102.9\left(6^{\prime}-\mathrm{C}\right), 44.6$ ($\left.7^{\prime}-\mathrm{C}\right), 137.3$ ($\left.8^{\prime}-\mathrm{C}\right), 115.8$ ($\left.9^{\prime}-\mathrm{C}\right), 56.4,56.1$ (OMe); Found: C, 67.55 ; H, 6.48. $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{6}$ requires C, $67.67 ; \mathrm{H}, 6.50 \%$. The obove deta were cosistent with the obove literature.
10. Eusiderin J: yellow liquid;IR ($\mathrm{v}, \mathrm{cm}^{-1}$, film): 1129.3 (C-O-C),1232.1, 1330.3, 1459.6, 1504.8, 1593.5 ($\mathrm{C}=\mathrm{C}$ of benzene), $1691.3(\mathrm{C}=\mathrm{C})$, 2836.6, $2938.1\left(-\mathrm{OCH}_{2}-\mathrm{H}\right)$; EI-MS (m / z): $386\left(\mathrm{M}^{+}\right), 344,302,208,193,151,149,105 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DCCl}_{3}\right): \delta 1.24(\mathrm{~d}$, $\mathrm{J}=6.10 \mathrm{~Hz}, 3 \mathrm{H}, 9-\mathrm{H}), 3.30(\mathrm{~d}, \mathrm{~J}=6.13 \mathrm{~Hz}, 2 \mathrm{H}, 7 \mathrm{~T}-\mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OMe}), 3.91$ ($\mathrm{s}, 9 \mathrm{H},-\mathrm{OMe}$), $4.05-4.13(\mathrm{~m}, 1 \mathrm{H}, 8-\mathrm{H}), 4.52(\mathrm{~d}, \mathrm{~J}=7.71 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 5.23\left(\mathrm{~d}, \mathrm{~J}=13.8 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right.$), 5.87-5.97 (m, $\left.1 \mathrm{H},-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}\right), 6.35-6.63(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}): \delta 131.2$ (1-C), 100.3 (2-C), 148.6 (3-C), 137.3 (4-C), 144.3 (5-C), 106.8 (6-C), 76.9 (7-C),74. (8-C), 12.6 (9-C), 131.3 ($\left.1^{\prime}-\mathrm{C}\right), 109 .\left(2^{\prime}-\mathrm{C}\right), 144.3$ (3'-C), 132.5 ($\left.4^{\prime}-\mathrm{C}\right), 153.5$ ($\left.5^{\prime}-\mathrm{C}\right), 104.6$ ($\left.6^{\prime}-\mathrm{C}\right)$, 40.0 ($7^{\prime}-\mathrm{C}$), 137.3 ($\left.8^{\prime}-\mathrm{C}\right), 115.8$ ($9^{\prime}-\mathrm{C}$), 56.3, 56.2 (OMe); Found: C, 68.33; H, 6.70. $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{6}$ requires C, $68.38 ; \mathrm{H}, 6.78 \%$. The obove deta were cosistent with the literature ${ }^{9}$.
11. Eusiderin E: H. C. Sergio, Y. Massayoshi and R. G. Otto. Ptytochemistry, 1985, 24, 1051. yellow liquid; IR: $v\left(\mathrm{~cm}^{-1}\right.$, film): 1130.3 (C-O-C), 1230.2, 1286.9, 1331.6, 1458.9, 1593.8, ($\mathrm{C}=\mathrm{C}$ of benzene), 1688.9 ($\mathrm{C}=\mathrm{C}$), 2845.8, $2926.1\left(-\mathrm{OCH}_{2}-\mathrm{H}\right), 3644.1(-\mathrm{O}-\mathrm{H})$; EI-MS (m / z): $372\left(\mathrm{M}^{+}, 16\right), 245(32), 194$ (65), 180 (100); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.14$ (d, J=6.21 $\mathrm{Hz}, 3 \mathrm{H}, 9-\mathrm{H}$), 1.7 (dd, J=1.60Hz, $6.60 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{CH}=\mathrm{CHCH}_{3}$), $4.05-4.13$ (m, 1H, $\left.8-\mathrm{H}\right), 4.59$ (d, J=7.8Hz, $1 \mathrm{H}, 7-\mathrm{H}), 5.79-6.00(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}=\mathrm{CHMe}), 6.36-6.79(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ (100 MHz): $\delta 136.0$ (1-C), 107.5 (2-C), 149.7 (3-C), 137.3 ($4-\mathrm{C}), 149.7$ (5-C), 104.2 (6-C), 85.8 ($7-\mathrm{C}$), 78.6 ($8-\mathrm{C}$), 21.6 ($9-\mathrm{C}), 136.1$ ($\left.1^{\prime}-\mathrm{C}\right), 108.3$ ($\left.2^{\prime}-\mathrm{C}\right), 143.0$ ($\left.3^{\prime}-\mathrm{C}\right), 138.0$ ($4^{\prime}-\mathrm{C}$), 143.0 ($\left.5^{\prime}-\mathrm{C}\right), 102.9$ ($\left.6^{\prime}-\mathrm{C}\right), 128.5$ ($\left.7^{\prime}-\mathrm{C}\right), 119.9$ ($\left.8^{\prime}-\mathrm{C}\right), 22.6$ ($\left.9^{\prime}-\mathrm{C}\right), 60.5,64.8$ (OMe); Found: $\mathrm{C}, 68.37 ; \mathrm{H}, 6.73 . \mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{6}$ requires $\mathrm{C}, 68.38 ; \mathrm{H}, 6.78 \%$. The above date were consistent with the obove literature.
12. Eusiderin F: W.D. Macrea, G. H. N. Towers. J. Ethnopharmald, 1984, 12, 75.
yellow liquid; IR: v (cm^{-1}, film): 1131.2 (C-O-C), 1230.1, 1287.3, 1331.8, 1458.9, 1593.9 ($\mathrm{C}=\mathrm{C}$ of benzene), $1689.8(\mathrm{C}=\mathrm{C}), 2845.9,2926.2\left(-\mathrm{OCH}_{2}-\mathrm{H}\right)$; EI-MS $(\mathrm{m} / \mathrm{z}): 386\left(\mathrm{M}^{+}, 36\right)$, 208 (100), 194 (48), 193 (57), 191 (31), 179 (26); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 1.14$ (d, $\mathrm{J}=6.20 \mathrm{~Hz}, 3 \mathrm{H}, 9-\mathrm{H}), 1.7\left(\mathrm{dd}, \mathrm{J}=1.63 \mathrm{~Hz}, 6.60 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{CH}=\mathrm{CHCH}_{3}\right), 4.05-4.13(\mathrm{~m}, 1 \mathrm{H}, 8-\mathrm{H})$, $4.59(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 5.79-6.00(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}=\mathrm{CHMe})$, 6.36-6.79 (m, 4H, $\mathrm{Ar}-\mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}): \delta 136.0$ (1-C), 107.5 (2-C), 149.7 (3-C), 137.3 (4-C), 149.6 (5-C), 104.4 (6-C), 85.8 (7-C), 78.6 ($8-\mathrm{C}), 21.6$ ($9-\mathrm{C}$), 136.1 ($\left.1^{\prime}-\mathrm{C}\right), 108.3$ (2'-C), 143.3 (3'-C), 138.0 ($\left.4^{\prime}-\mathrm{C}\right), 143.0$ ($\left.5^{\prime}-\mathrm{C}\right), 102.9$ ($\left.6^{\prime}-\mathrm{C}\right), 128.5$ ($\left.7^{\prime}-\mathrm{C}\right), 119.7$ ($\left.8^{\prime}-\mathrm{C}\right), 22.6$ ($\left.9^{\prime}-\mathrm{C}\right), 60.5,64.7$ (OMe); Found: C, 67.58 ; H, 6.42. $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{6}$ requires C, $67.67 ; \mathrm{H}, 6.50 \%$. The obove deta were consistent with the obove literature.

